Topology optimization of structures with metamaterials – Presented by Jun Wu, TU Delft

Jun Wu

Jun Wu, TU Delft, will speak at 4D Printing & Meta Materials Conference, on April 17, during the 3D Printing Event in The Netherlands.

Lightweight structures are of ultimate importance in aerospace, automotive, and industrial design engineering. Typically structures are designed and manufactured with solid materials. Emerging porous metamaterials offer new opportunities and challenges for the design of functional structures.

Continue reading “Topology optimization of structures with metamaterials – Presented by Jun Wu, TU Delft”

‘Action-at-a-distance’ metamaterials for soft robotics, developed by TU Delft researchers (video)

soft robotics

Action-at-a-distance’ metamaterials for soft robotics, developed by TU Delft researchers

Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of “action-at-a-distance” metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson’s ratios as a way of making “action-at-a-distance” metamaterials.
We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.

Continue reading “‘Action-at-a-distance’ metamaterials for soft robotics, developed by TU Delft researchers (video)”

TU Delft researchers develop new technique to combine 3D Printing & origami folding (video)

3D Printing

TU Delft researchers develop new technique to combine 3D Printing & origami folding

Researchers at TU Delft have combined origami techniques and 3D printing to create flat structures that can fold themselves into 3D structures (for example a tulip). The structures self-fold according to a pre-planned sequence, with some parts folding sooner than others. Usually, expensive printers and special materials are needed for that. But the TU Delft scientists have created a new technique that requires only a common 3D printer and ubiquitous material. Among other applications, their research has the potential to greatly improve bone implants.

In recent years, Amir Zadpoor of TU Delft has become somewhat of an origami master. His team’s work combines the traditional Japanese paper folding art with the more novel technology of 3D printing in order to create constructs that can self-roll, self-twist, self-wrinkle and self-fold into a variety of 3D structures. In 2016, the researchers already demonstrated several self-folding objects. ‘But there were still serious challenges we needed to address’, says Zadpoor. Continue reading “TU Delft researchers develop new technique to combine 3D Printing & origami folding (video)”

TU Delft researchers develop self-twisting of DNA-inspired constructs (VIDEO)

self-twisting of DNA-inspired constructs

TU Delft researchers develop self-twisting of DNA-inspired constructs. Researchers at TU Delft have made flat surfaces that are 3D printed and then ‘taught’ how to self- fold later. The materials are potentially very well suited for all kinds of medical implants. They report on their findings in the October 24th edition of Materials Horizons which features this research on its cover.

Continue reading “TU Delft researchers develop self-twisting of DNA-inspired constructs (VIDEO)”

Students at TU Delft Use 4D Printing to Make Products with Origami-Like Characteristics that Change over Time

Students at TU Delft Use 4D Printing to Make Products with Origami-Like Characteristics that Change over Time.A relatively new development in 3D printing is the addition of a fourth dimension: time. Students at TU Delft used this fourth dimension to print a product with origami-like characteristics that changes over time. They did this by using a 3D printer to print a form on a fabric substrate that is held under tension. Along with eight other projects, including a 3D-printed bicycle frame made of rust-resistant steel and 3D models of heart defects that are used to aid doctor-patient consultations, this project is part of the ‘Advanced Prototyping’ exhibition on 27 October at TU Delft. Continue reading “Students at TU Delft Use 4D Printing to Make Products with Origami-Like Characteristics that Change over Time”